
N88- 17279 -

TASK-LEVEL ROBOT PROGRAMMING:
INTEGRAL PART Ob' EVOLUTION

FROM TELEOPERATION TO AUTONOMY

James C. Reynolds

Houston, Texas 77050

MITRE Corpirat ion
1120 NASA Rd. 1

ABSTRACT

In 1984 Congress recognized the merit of
using the Space Station as a stimulus to
develop a new generation of automation
and robotics technology that would be
efficient and flexible enough not only to
meet the needs of the Space Station but
also to benefit the U . S . economy. Task-
level robot programming should be part of
this new generation. Although it is a
feasible technology for the mid-90 s , it
is not as well known within the NASA
research and development community as it
should be. This paper explains what
task-level robot programming is and how
it differs from the usual interpretation
of "task planning" for robotics. Most
importantly, it is argued that the
physical and mathematical basis of task-
level robot programming provides
inherently greater reliability than
efforts to apply better known concepts
from Artificial Intelligence (AI) to
autonomous robotics. Finally, an
architecture is presented that allows the
integration of task-level robot
programming within an evolutionary,
redundant, and multi-modal framework that
spans teleoperation to autonomy.

I NTRODUCT I ON

is an outstanding candidate for this new
generation of technology. Such a system
requires a complete world model of the
workspace and task-level commands that
consist of the identification of relevant
objects and their desired relationships.
An example would be, MOVE OBJECT ORU24
AGAINST FACE3 OF TRUSS66. These commands
would then automatically be translated to
the low-level motion and sensing
operations required to reliably and
safely achieve them. Such a system would
prevent the tedious and time-consuming
coding that flexible robot control
normally demands.

Ten years of research in this area at
Stanford, MIT, Carnegie-Mellon, IBM, and
other robotic research centers has placed
the development of a practical task-level
robot programming system on the
technological agend.1. A unified
conceptual framework h a s been developed
and applied to the component problems of
motion planning with obstacle avoidance,
grasp planning for reachability and
stability, and fine motion planninq using
compliance. Recently, an integrated
system that implements much of the
results of this work has been built at
MIT. For reasons discussed below, NASA
could be the decisive force in pushing
this research out of the laboratory for
the benefit of the Space Station Program

In 1984 Congress recognized the merit of and U . S . industry. using the Space Station as a stimulus to
deveiop a new generation of automation
and robotics technology that would be
efficient and flexible enough not only to
meet the needs of the Space Station but
also to benefit the U . S . economy (NASA,
1985). The Congressional desire for
technology transfer was at least
partially motivated by the need to boost
American labor productivity so that U.S.
manufacturing would be more competitive
with manufacturing in other nations.

A task-level robot programming system,
which could be used with any robotic
manipulator system on the Space Station,

Research and development of autonomous
robotics should build on the successes of
this work. Unfortunately, alternate
techniques borrowed from AI have often
been applied to the problem L I generating
robot plans. Some of these techniques
are knowledge-based and heuristic and are
therefore inappropriate for robotics,
especially in applications where
reliability and safety are paramount. In
addition , doma in- independent- planning is
often applied to robotics, b u t this no
longer can be viewed as a viable
approach. Theorems from a recent

533

important thesis suggest that efficient
domain-independent planning with
expressive power for real-world robotics
is impossible .
A task-level robot programming system
would support the evolutionary approach
to autonomous robotics that must be taken
on the Space Station. Components of a
system could be used as a plan checker
for robot-level programs written by
ground-based personnel. As confidence in
the system increased, it could be used as
a plan generator of robot-level
instructions that would then be simulated
and modified by ground-based programmers
with the advice of Station-based
astronauts. Finally, when the system is
judged mature, its output of instructions
could be fed directly into a robot
controller interactively monitored by
Station personnel. This paper presents
an architecture for enabling the graceful
phasing in of this technology to the
Space Station Program.

DESCRIPTION OF TASK-LEVEL ROBOT
PROGRAMMING

The best description of a task-level
robot programming system together with a
discussion of alternate implementation
issues is in (Lozano-Perez and Brooks,
1985). That paper describes a framework
called TWAIN for the development of such
systems. The input to TWAIN would be a
complete model of the robot and its
environment together with a complete
specification of the tasks to be
accomplished.

For a practical system the model would
not only include a geometrical
description of objects, but also any
other features of the environment that
impose constraints on the motion of the
robot. Mass, inertia, the coefficient of
friction, restrictions on movement caused
by linkages of objects, including the
manipulator, and, most importantly,
tolerances on the objects and bounds on
capabilities such as accuracy, range, and
force of both the sensors and manipulator
would all be part of a task-level robot
programming sysreiri's world model.
Without the latter information it is
impossible to plan motions in the face of
the uncertainty that is the key problem
of flexible robotics. The recent
heightened awareness of the need for
design knowledge capture during the
development of the Space Station has made
it possible that a model like this could
be bui It.

The command input to the system would
consist of robot-independent operations
specifying the desired spatial
relationships of relevant objects. A

simple block-stacking example could be
commanded as follows:

PLACE OBJECT-A AGAINST TABLE
PLACE OBJECT-B SO THAT

FACE-1 OF B IS AGAINST FACE-2
OF OBJECT-A
AND
FACE-2 OF B IS COPLANAR WITH FACE-3
OF OBJECT-A
AND
FACE-3 OF B IS COPLANAR WITH FACE-1
OF OBJECT-A

The importance of the commands being
robot-independent is that the user does
not have to specify grasp positions,
complicated obstacle-avoiding paths, or
terminating conditions based on dynamic
and geometrical constraints. This
enormously simplifies the practice of
robot programming.

The commands to the task planning system
advocated here are intermediate between
low-level controller instructions and the
input to traditional A I planners. It is
important to recognize that this is not
what is usually meant by "task planning"
for robots. S i n c e most task planners for
robotics are based on the long chain of
A I planners going back to STRIPS and
ABSTRIPS, which were used to control the
famous SRI robot, SHAKEY, their use of
the word "task" is for a higher level of
abstraction. A space-oriented example
would be REMOVE ORU-24 FROM CHAMBER-3.
Within the TWAIN framework this "task"
might require several commands to
specify.

The focus of much research and
development for autonomous robotics has
been on this higher abstraction task
planning. The problem of focusing on
this level rather than the intermediate
level that TWAIN addresses is that the
really hard problems of robotics are
avoided. These higher level planners are
capable of generating sequences of
actions, but are not capable of planning
under uncertainty or where there are side
effects of the consequences of the
planned actions. This will be discussed
in greater detail in a later section of
this paper.

THE IMPORTANCE OF TASK-LEVEL ROBOT
PROGRAMMING

The development of a task-level robot
programming system, which could be used
with any robotic manipulator system on
the Space Station, e.g., the Flight
Telerobotic Servicer (FTS), would
increase the productivity of the crew and
ground personnel fo r Space Station
operations and be a critical technology
to transfer to U . S . industry.

That this capability would be crucial for
the efficiency and usefulness of the
Space Station itself is indicated by an
analysis of the baseline configuration of
the Space Station in terms of the crew
hours available for maintenance and
housekeeping (Reynolds, 1986). It is now
widely recognized that there is, in fact,
a contradiction between the hours
estimated for those activities and the
hours required for customer services.
The logical resolution of this
contradiction is to use A&R to increase
crew productivity. A FTS that requires
one or more crew members to cmtinuously
control it through teleoperation would
possibly increase functionality of the
Space Station and reduce extra-vehicular
activity. It is not likely, however, to
increase crew productivity enough to
eliminate the contradiction between
maintenance requirements and customer
needs. The FTS must be programmable, and
a task-level programming system would be
the most productive way of programming
the FTS.

Evidence that the development of a task-
level programming system would indeed
promise major advantages for industry can
be found in tt? 1982 study by the Society
of Manufacturiny hrgineers and the
University of Michigan (Smith, 1982).
That report recognized that robot control
was the most important technological
factor needed for the rapid utilization
of robotics by U.S. industry, rankinq
ahead of computer v i s i o n , tactile
sensing, and mechanical manipulation.
The report was, however, overly
optimistic about achieving this
technology; a practical implementation of
a task-level robot prograniniing system by
NASA for the Space Station could make the
predictions of that report a reality.

Presently, robots in industry are either
programmed by guiding or programmed in a
robot-level language which includes
instructions for accessing sensors and
controlling the motions of the robot.
Each of these methods has key
shortcomings in the context of either
industrial or space applications.

Programming by guiding involves the
operator of the robot moving it through a
sequence of positions needed to
accomplish a specific task. The motions
are recorded on tape and then are played
back to execute this sequence repeatedly.
This is one step above hardwired
automation in that the robot can be used
for more than one sequence of positions.
However, it is equivalent to straight
line programming in that no branching is
allowed. For the robot to accomplish a
task with this type of programming, the
task must be characterized by little
uncertainty in the geometry of the

environment. It is impossible, with this
type of programming, to use sensor
feedback to correct positional errors or
to choose alternate paths in the face of
unexpected conditions.

Incorporating programming by guiding
capability in the Space Station Program
would accomplish little in benefiting
U.S. industry or improving crew
productivity on the Space Station. It is
a mature technology which would not be
adva7ced by its inclusion in Space
Station A&R. Further, it is most
appropriate for highly repetitive tasks,
where the capability of deviating from a
specified path is not of great
importance. Even for maintenance ans
assembly tasks that require no great.
intricacy, there must be fine control
with sensory feedback bf any manipulator
external to the Space Station, because of
the sensitivity of the Station to the
inertial effects of manipulator motion.

In addition, it is unlikely that many of
the maintenance tasks will be done over
and over for long periods of time (Holt,
1986). Typically, there will be several
different maintenance tasks to be
accomplished over a short time period
like one day, and then it may be a much
longer period before any of those tasks
are done again. This situation is
similar to what exists in small batch
manufacturing, where robotics has not yet
been applied because of the limitations
of both programming by guiding and robot-
level programming.

Robot-level programming is a commercially
available alternative to programming by
guiding. It represents an advance in
that branching on sensor input is
allowed, thus allowing for more robust
behavior in the face of uncertainty and
error. VAL-I1 for the Unimation series
of robots and AML for certain IBM robots
are two of the best known examples of
these languages. These languages,
although commercially available, need
improvement. Some of the problems of
these languages were outlined in (Lozano-
Perez, 1983b). These include the
following:

able to communicate. Information in CAD
systems should speed the computations
necessary for motion.

2) Robot programming is highly device
dependent, describing operations in terms
of the motion of individual arms rather
than tasks. The addition of new objects
in the environment, including new
robotic devices such as additional
manipulators, generally requires the
rewriting of the entire program.

1) Robots and CAD/CAM systems are not

535

3) Obstacle avoidance is difficult to
specify, resulting in long complex
programs consisting of moving and then
checking. The programmer must
anticipate all situations.

The key shortcoming of robot programming
today is that, like any other type of
software development, it is expensive and
time-consuming. In industry very few of
the explicit robot programing languages
that are sold with robotic systems are
ever used; it is easier to use guiding
for programming (Rossol, 1984). For
operations that require sensor data for
reliability, the necessary programs are
extremely complex. (Carlisle, 1985)
mentions a VAL-I1 program in an assembly
plant that was over one hundred pages
long.

If the functions of the robot consist of
manufacturing o r assembling a few parts
many times, the expense of programming
can be justified. The problem is that a
large part of industry manufactures and
assembles many different parts in
relatively small quantities. This has
prevented the introduction of robots and
advanced automation into many industries.
Analogously, if the tasks to be performed
on the Space Station are indeed diverse
and non-repetitive, then the time
required to program the robotic device
might be greater than the time saved by
the astronaut not being a slave to the
robotic device.

Task-level programming is essentially a
means to speed up the software
development process that is ever more
often the bottleneck in the engineering
of large-scale systems. It is necessary
for the next leap in the use of robots in
industry. Without this capability the
application of autonomous robotics to
Space Station operations will be
impossible. Further, research in the AI
and robotics laboratories has reached a
maturity that demands a new phase of
actual development of these systems.
Unfortunately, it is also clear that the
impetus to utilize the fruits of over ten
years of research will not come from
industry. Thus, NASA can play a crucial
role, which is exactly what Congress
intended by its A&R mandate.

FEASIBILITY OF TASK-LEVEL ROBOT
PROGRAMMING

The feasibility of a task-level robot
programming system for the Space Station
Program depends on over ten years of
increasingly fruitful research.

The first big advance in the synthesis of
robot programs from task-level
specifications was the systen described

in (Taylor, 1976). I t introduced the use
of parameterized procedure skeletons,
which were generalized robot programs
including motions, error tests, and
necessary computations but without the
parameters bound to any numeric values.
Depending on the geometry of the model
and the tolerances and uncertainty
bounds, a skeleton was chosen, and the
remaining parameters were determined for
grasp and approach positions. Taylor
utilized linear programming methods to
compute legal ranges for the parameters.

This work was significantly extended in
(Brooks, 1982). Rather than using
numerical methods to propagate
constraints caused by position
uncertainty, control uncertainty, and
model uncertainty (tolerances), he used
formal logic techniques to reason both
forward to check error bounds and
backward to restrict the range of plan
variables and introduce sensing
operations.

Fundamental to the line of research
described here is the concept of
configuration space (Lozano-Perez,
1983a). The configuration of an object
is the set of parameters necessary to
completely specify the position of all
points of the object. The configuration
space of an object is the space of all
possible configurations oE the object.
Obstacle avoidance can be accomplished by
transforming a robot into a point and,
for each element of a discretized set of
possible orientations of the robot,
growing the obstacles by the shape and
size of the robot wherever contact with
the obstacles is feasible.

Rapid progress in the development of
algorithms for gross motion planning with
obstacle avoidance and fine motion
strategies was made during the next few
years based on these concepts. (Brooks,
1984) is a good example of gross motion
planning work and provides further
references. An algorithmic approach to
the automatic synthesis of fine motion
strategies (guarded moves with
compliance) was described in (Lozano-
Perez, Mason, and Taylor, 1984); since
then this line of research has matured
further (Erdmann, 1986).

Automatically synthesized fine motion can
be achieved by extending the
configuration space concept to the notion
of recursively determined pre-images.
These ar.e the set of all starting
configurations which can reach a goal
configuration within the constraints of
control and model uncertainty but
allowing for compliant motion. The pre-
image must also exclude configurations
and velocities which would lead to
sticking. If the set does not include

536

the actual starting configuration then
the algorithm is applied recursively to
determine the pre-image of a
configuration within the first pre-image.
Thus multi-step plans can be generated.

TWAIN was proposed in (Lozano-Perez and
Brooks, 1985) and embodies all these
ideas. Each single task specification is
turned by the executive planning module
of the system into a sequence of gross
motion, grasping, gross motion, fine
motion (either synthesized or pre-
determined), and ungrasping. There are
separate modules for each of these three
types of planning. There is a skeleton
library and skeleton matcher to choose
unrefined plans, and there is a
constraint propagator which uses the
principle of least commitment and
symbolic propagation to instantiate
skeleton parameters and add sensing
operations. Finally, because success is
not guaranteed, dependency-directed
backtracking is employed to reduce
search.

TWAIN has not been implemented. However,
since its proposal, component problems
for a task-level programming system based
on the work of Brooks, Lozano-Perez,
Mason, and Taylor have been tackled with
increasing success. There has been an
explosion of work on motion planning with
obstacle avoidance. The automatic
generation of grasping (Nguyen, 1987) and
regrasping (Tournassoud et al., 1987)
strategies has also been tackled.
Finally, a systematic attack on the
problem of error detection and recovery
(as opposed to the ad hoc "hacks" of
traditional AI planners) based on the
algorithms and concepts developed in the
above referenced work was informally
presented in (Donald, 1986).

Some of these more recent ideas and some
of the ideas of the original TWAIN
proposal have been implemented in an
integrated robot system by Lozano-Perez
and his colleagues at MIT (Lozano-Perez
et al., 1987). The Handey system is
capable of locating a part that has been
accurately modeled in an unstructured
environment, choosinq a grasp on the
object, planning a collision free path to
the object, grasping the object, planning
a collision free path to the specified
destination, and placing the object in
the commanded position. The system does
not incorporate the ideas of constraint
propagation, but it is under development
with an error detection and recovery
capability being one of the planned
additions.

This large and growing body of work
tackling the hard problems of robotics
utilizes sophisticated mathematics and is
thoroughly grounded in geometry and

mechanics. Its algorithms can be analyzed
for correctness and completeness, and
hence their robustness can be verified.
It does not use expert systems or the
simplistic techniques of traditional AI
planners. It is not surprising that this
approach has led to an actual robotic
system that is capable of more impressive
"intelligence" than any system depending
on those techniques. It is this work
that NASA should be pushing and
extending,

AI AND AUTONOMOUS.ROBOTICS

During the last few years many of the
concepts and techniques of AI have become
commonplace in engineering and data
processing publications. It is of
interest then to discuss' the relevance of
AI to robotics. The first concept and
associated techniques from AI to be
widely applied was "expert systems."
This phrase has now given way to
"knowledge-based systems," perhaps in
recognition that many useful applications
could be built without needing expert
competence. In either case these systems
contain a knowledge base of facts and
rules and an inference engine to reason
from the knowledge base and the data
input to the system.

For robots to be autonomous it is
essential that the algorithms controlling
their actions are correct (the robot does
what is intended by the human) and
reasonably complete (if it is possible to
accomplish a specified task, a robot-
level program will be generated to do
it). This is extremely important for
robotic applications that must be rohust
in the face of uncertainty. In a t i ,
hazardous environment like space the nee4
for correctness and completeness is even
greater. The use of expert systems, which
are inherently heuristic, is an ill-
advised application of a useful
technology. It is simply not good enough
for a motion planner to plan an obstacle
avoiding path ninety per cent of the
time.

Further, even without performance and
reliability considerations for robotic
applications, the use of expert systems
in robotics is inappropriate. This is
because there are few heuristic rules
that can be generalized to guide motion
planning; instead, it appears that small
changes in the environment lead to
significantly different mo ion
strategies. For example, n the simple
peg-in-hole task the geome rically
trivial change of adding a chamfer to the
hole would result in a rad cally
different motion strategy.

537

Domain-independent planning is an area of
AI that seems to be naturally applicable
to robotics. Indeed, the famous early
planners like STRIPS and HACKER were
often applied to planning the actions of
a "robot" in a "blocks world." ABSTRIPS
(Sacerdoti, 1974) actually controlled a
physical robot, SHAKEY. Unfortunately,
an investigation of the SHAKEY project
shows that the environment was too
carefully engineered to be realistic and
that errors in the model were handled by
expensive re-planning. In addition, all
of the well known planners utilized
impoverished semantics; their worlds
could be described in a few sentences.
Representing the complex, largely
quantitative model required f o r task-
level programming would be impossible
using these planners.

There are two reasons that traditional AI
planners are so inappropriate for
robotics. First, robot planning requires
geometric representations and those are
largely numeric, which has not been the
emphasis of AI in general, including its
planners. Second, robot planning must
handle uncertainty and error, and AI in
general has not been able to solve this
problem. A I planners do not even pretend
to try; i f they attempt to handle i t at
all, it is by ignoring uncertainty while
planning and then trying to recover
during execution.

Even more devastating to those who wish
to apply the techniques O E AI planning to
robotics is an important thesis (Chapman,
1985). That work shows that all well
known AI planners work in essentially the
same way. Further, their action
representations do not allow for indirect
or input dependent effects o r for
uncertain execution. Finally, extending
them with more expressive action
representations while keeping them
computationally tractable is probably
impossible and would also invalidate the
proofs of correctness and completeness of
these planners within their limited,
artificial world.

AN EVOLUTIONARY IMPLEMENTATION OF TASK-
LEVEL ROBOT.PROGRAMMING FOR THE SPACE
STAT I ON

It is important that the development of
autonomous robotics for space
applications proceed in an evolutionary
manner. In addition, any robotic system
on the Space Station must be capable n f
allowing human control at any point
during its operation. A task-level
programming system for the Space Station
could be implemented within these
requirements. (See Figure 1.)

The first step would require the
construction of a teleoperated control
system augmented with the advanced ideas
of computer-assisted human interaction
described in (Conwsy et a l . , 1987). On
top oE that the coniponerits of TWAIN that
are necessary for plan checking would be
built. This would allow the astronaut to
input robot-level programs written by
ground personnel and determine their
correctness. I f no buqs were detected,
there would be feedback provided by
simulation before allowing execution. I f
bugs were detected, the plan checker
would act as a smart compiler in
suggesting corrections. Finally, as
confidence in the technology reached an
acceptable level, the full-scale planner
could be built which would allow the
astronaut to input task-level plans,
check their simulated effects, and
monitor execution as closely as desired.

CONCLUSION

Task-level robot programming is an
important technology that promises great
benefits both on the ground and in space.
Considerable progress has been made
toward realizing a system that could
automate the flexible control of robots.
This progress has been characterized by a
solid grounding in geometry and
mechanics, which makes it verifiably
robust and a natural choice for space
applications. It is feasible to
implement this technology in an
evolutionary way for the Space Station
Program. NASA should take steps to build
on the successes of the research
described in this paper in order to
develop autonomous robotics.

REFERENCES
Brooks, Rodney, "Symbolic Error Analysis
and Robot Planning," INTERNATIONAL
JOURNAL OF ROBOTICS RESEARCH, Cambridge,
Ma., Vol. 1, No. 4, December, 1982, pp.
29-68.

Brooks, Rodney, "Planning Collision Free
Motions for Pick and Place Operations,"
ROBOTICS RESEARCH: THE FIRST
INTERNATIONAL SYMPOSIUM, M. Brady and R.
Paul, Eds., MIT Press, Cambridge, Ma.,
1984, pp. 5-37.

Carlisle, Brian, "Key Issues of Robotics
Research," ROBOTIC RESEARCH: THE SECOND
INTERNATIONAL SYMPOSIUM, H. Hanafusa and
H. Inoue, Eds., MIT Press, Cambridge,
Ma., 1985, pp. 501-503.

Chapman, David, "Planning for Con] unct ive
Goals," Technical Report 802, MIT
Artificial Intelligence Laboratory,
Cambridge, Ma., November, 1985.

538

Conway, Lynn, Volz, Richard, and Walker,
Michael, "New Concepts in Tele-Autonomous
Systems," SECOND AIAA/NASA/USAF SYMPOSIUM
ON AUTOMATION, ROBOTICS AND ADVANCED
COMPUTING FOR THE NATIONAL SPACE PROGRAM,
Paper IAA-87-1686, Arlington, Va.,
March 9-11, 1987.

Donald, Bruce, "Robot Motion Planning
with Uncertainty in the Geometric Models
of the Robot and Environment: A Formal
Framework for Error Detection and
Recovery," 1986 IEEE CONFERENCE ON
ROBOTICS AND AUTOMATION, San Francisco,
Ca., April 7-10, 1986.

Erdnianri, Michael, "Using Backproject ions
for Fine Motion Planniny with
Uncertainty," THE INTERNATIONAL JOURNAL
OF ROBOTICS RESEARCH, Canibr idge, Ma. ,
Vol. 5, No. 1, Spring 1986, pp. 19-45.

Holt, Alan, "Mobile Robotics and
Artificial Intelligence for Large Payload
Assembly and Maintenance," Paper 6-
0607, ROBEX '86, Houston, Tx., June,
1986.

Lozano-Perez, Tomas, "Spatial Planning: A
Configuration Space Approach," IEEE

2 , February, 1983a, pp. 108-120.

Lozano-Perez, Tomas, "Robot Programming,"
Proceedings of the IEEE, Vol. 71, No. 7,
July, 198313.

Lozano-Perez, Tomas, Mason, Matthew, and
Taylor, Russell, "Automatic Synthesis of
Fine-Motion Strategies for Robots," THE
INTERNATIONAL JOURNAL OF ROBOTICS
RESEARCH, Cambridge, Ma., Vol. 3, No. 1,
1984.

Lozano-Perez, Tomas and Brooks, Rodney,
"An Approach to Automatic Robot
Programming," Artificial Intelligence
Laboratory, Massachusetts Institute of
Technology, A. I. Memo No. 842, April,
1985.

Lozano-Perez, Tomas, Jones, Joseph,
Mazer, Emmanuel, O'Donnell, Patrick, and
Grimson, Eric, "Handey: A Robot System
that Recognizes, Plans, and Manipulates,''
1987 IEEE CONFERENCE ON ROBOTICS AND
AUTOMATION, Raleigh N.C., March 31 to
April 3, 1987.

NASA, "Advancing Automation and Robotics
Technology for the Space Station and for
the U . S . Economy, Progress Report 1,"
NASA Technical Memorandum 87772, Houston,
Tx., October, 1985.

Nguyen, Van-Duc, "Constructing Stable
Grasps in 3D," 1987 IEEE CONFERENCE ON
ROBOTICS AND AUTOMATION, Raleigh N.C.,
March 31 to April 3, 1987.

TRANSACTIONS ON COMPUTERS, Vol. C-32, NO.

Reynolds, James, "Analysis of Crew Time
on the Space Station," unpublished MITRE
Corp. report to the Artificial
Intelligence and Information Sciences
Office at Johnson Space Center of NASA,
Houston, Tx., March, 1986.

Rossol, Lothar, "Technological Barriers
in Robotics: A Perspective from
Industry," ROBOTIC RESEARCH: THE FIRST
INTERNATIONAL SYMPOSIUM, M. Brady and R.
Paul, Eds., MIT Press, Cambridge, Ma.,
1984, pp. 963-972.

Sacerdoti, Eail, "Planning in a
Hierarchy of Abstraction Spaces,"
ARTIFICIAL INTELLIGENCE, Vol. 5, No. 2,
1974, pp. 115-135.

Smith, Donald and Wilson, Richard,
"Industrial Robots: A Delphi Forecast of
Markets and Technology," Society of
Manufacturing Engineers and The
University of Michigan, 1982.

Taylor, Russell, "The Synthesis of
Manipulator Control Programs from Task-
level Specifications," AIM-282, Stanford
Artificial Intelligence Laboratory, Palo
Alto, Ca., July, 1976.

Tournassoud, Pierre, Lozano-Perez, Tomas,
and Mazer, Emmanuel, "Regrasping," 1987
IEEE CONFERENCE ON ROBOTICS AND
AUTOMATION, Raleigh N.C., March 31 to
April 3, 1987.

539

Autonomy

actuators
_____)

sensors -

time & pos. clutch
forward simulation

Teleoperation
FIGURE 1 - EVOLUTIONARY ARCHITECTURE WITH TASK-LEVEL PROGRAMMING

540

